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Damping of surface waves in an incompressible liquid 

By K. M. CASE and W. C. PARKINSON 
Physics Department, University of Michigan, Ann Arbor, Michigan 

(Received 26 November 1956) 

SUMMARY 
The damping of surface waves of small amplitude in liquid 

contained in cylinders has been calculated. Viscous dissipation 
in an assumed laminar boundary layer was taken to be the primary 
cause of damping. Experimental results were obtained for the 
logarithmic decrement as a function of the ratio of liquid height 
to cylinder radius for several water-filled cylinders. Theory 
and experiment were found to be in good agreement. 

I. INTRODUCTION 
The calculation of the natural frequencies of the surface waves in a 

liquid contained within solid boundaries except for one free surface is a 
well-known and largely solved classical problem (see Lamb (1945), $ 257) ; 
but the corresponding problem of the damping of these waves does not 
appear to have been so thoroughly treated. Some early work on the 
viscous damping of surface waves is reported in Lamb (1945, $0 348 & 349), 
but this was mainly confined to progressive waves far removed from solid 
boundaries. The first attempt to account for the effects of solid boundaries 
on wave damping appears to have been made by Boussinesq as early as 
1878. His theory extends to both progressive and standing waves, and 
was used in more recent times by Keulegan (1948) as a starting point for a 
calculation of the attenuation of solitary waves. Other modern work on 
the damping of progressive waves includes that of Biesel (1949), which 
deals with waves in a channel of finite depth but infinite width, and that of 
Ursell (1952), which concerns the dissipation in the vicinity of vertical 
walls when the depth is infinite. Furthermore, Hunt (1952) has calculated 
the combined effects of finite width and finite depth. The latter authors 
all employed boundary-layer approximations, which are applied in this 
paper to the case of standing waves. In particular, we shall give the results 
of calculations of the damping of standing waves in right circular cylinders. 

Since the calculations involve a number of idealizations, it seemed 
advisable to check the theory with experiment. Accordingly, the damping 
was measured for water in cylinders of different radii as a function of the 
ratio of water depth to cylinder radius. The apparatus used and the 
results obtained are described in $111. In §IV it is shown that, subject 
to certain limitations, the agreement between the theory and experiments 
is satisfactory. 
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11. ANALYSIS 
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In the interests of simplicity we have restricted ourselves to the considera- 
tion of small amplitude oscillations. 
this restriction frees us from worries about turbulence. Rough calculations 
indicate that with cylinders of the radii used in the measurements the flow 
is always far from the turbulent state. Some idea of the limits of validity 
of the small amplitude approximation can be obtained from the results of 
the experiments ($111) by noting what amplitudes of excitation give rise 
to a simple exponential decay law. 

For completeness and to provide a basis for the later work, we first 
sketch the calculation of the natural frequencies. 

Consider a rigid right circular cylinder of radius R with base at z = - ih .  
The equilibrium free surface of the liquid in the cylinder is at z = +&h. 
For liquids with low viscosity, such as water, we can expect that a good 
zeroth approximation is obtained by neglecting viscosity entirely and 
describing the liquid velocity distribution by means of the velocity potential 
function +c. Thus, we take 

. .  
In ad- the e c p a h m +  

u = -v+c, (1) 

v2+o = 0, (2) 

on rigid boundaries, where n is the normal vector. 

subject to the boundary conditions (3) are 
In  cylindrical coordinates (r ,  8, z) solutions of Laplace’s equation 

where 

Here, 

is chosen so that the integrals over the cylinder cross-section of xh and 
a+5& are unity. The kms are defined by 

J:(k,,,R) = 0. (7) 

(8) 

Expanding +c in terms of these proper functions, we have 

#c = 2 {cash kms(z  + ShHAms xms + B m s  +,,a)* 
1728 

If we expand ~ ( r , 8 )  (the height of the free surface at ( r ,8)  above the 
equilibrium plane) in terms of the xms and $ms we have 

dr, 8) = 2 {qms xms + Pms +m6}- (9) 
ms 
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The free surface condition 

a?l - at = %  

permits us to express the expansion coefficients A,,, B, in terms of the 
' surface coordinates ' qms, p,, in the form 

{k} = -{k}/k,sinhk,h. 

In these coordinates the kinetic energy becomes 

where V and p are the liquid volume and density respectively. 

potential energy ($2,) and the surface tension energy (QJ, where 
The potential energy $2 of the liquid is the sum of the gravitational 

and 

= bJ 2 kke[qL +P%l. (14) 
9n8 

(Here S, is the equilibrium free surface z = ah and (T is the surface tension 
coefficient.) 

The equations for the normal coordinates qlnS or p ,  obtained by 
substituting the energy expressions (12 a), (13 a) and (14) in Lagrange's 
equations (see Lamb (1945)' 0 135)' are 

From this there result the proper frequencies 

The contribution of surface tension is unimportant for the lower modes of 
vibration (k,,R small) except in cylinders of quite small radius. Since it 
adds only 1% to the frequency of the mode considered in the smallest 
cylinder used in the measurements (R = 1-5in.), it will henceforth be 
omitted, and s1 will be approximated by 

T o  find 
this we turn to the linearized Navier-Stokes equation for an incompressible 
fluid 

P?rns(COth k n s  h)/kms + (pg + &$)qrns = 0. 

OJ& = gk,, tanh k,, h{l + ak:,/(pg)}. 

(15) 

(16) 

(given by (13 a)). 
In the above development there is, of course, no damping. 

_ -  - -v g z + -  +uv2u, 
aU at ( 2 

with the equation of continuity 

and with the boundary condition 

u = o  
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Here p is the pressure and v = p/p the kinematic on fixed boundaries. 
viscosity. 

Let us represent the velocity vector in the form 

U =  - V ~ + V X A ,  (20) 
where 4 and A are respectively scalar and vector functions of ( r , d , z , t ) .  
It is readily demonstrated that this, together with 

2 +ga = a4 +const., 
P 

constitutes a solution of (17) and (18), provided that 

va4 = 0, 
aA 

vV'A = - . 
at 

If the boundary conditions of the problem can be satisfied by means of 
the expression (29) subject to (22) and (23), we may infer that this is the 
complete solution. The boundary conditions at the rigid surfaces S 

( -V++VxA)S=O,  (24) 
together with (22), (23) and the surface condition (10) make possible, in 
principle, an explicit, rigorous solution for 4 and A in terms of the surface 
coordinates. However, the general experience gained with boundary 
layers in the last fifty years suggests that this is hardly necessary. It is to 
be expected that 4 is essentially the velocity potential 4c characteristic of 
inviscid flow (i.e. the potential for which (a+c/an), = 0). 

We shall see that the contribution of the 
additional part 4: to the velocity is quite small. Assuming this (subject 
to later verification), we have as approximate boundary conditions on the 
rigid surfaces 

and 

Having 
obtained A, (22) and (25 b) determine 4;. The method of calculation is, 
in principle at least, one of successive approximation. Starting with the 
zeroth approximation (A = 0, 4 = +J, we calculate a first approximation 
to A. With this a correction to 4 can be found. In principle this process 
could be repeated to an arbitrary accuracy. In practice, however, the 
first approximation is sufficiently accurate by itself. 

The solution of the equations for A is enormously simplified by noting 
that the region of non-vanishing A is confined to the immediate vicinity 
of the boundaries. Indeed, assuming the special case of a simple harmonic 
time dependence ( A  oc cirut), we obtain 

Let us write 4 = 4e+& 

[n x (V x A)Is = (n x V4cl9 

( n . v x A), = (a4;/an),. 

(25 a) 

(25 b) 
Since 4, is now assumed known, (23) and (25 a) determine A. 

(VZ+i/l2)A = 0, (26) 
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where the boundary-layer thickness I = 1 / ( u / w )  is of the order of 0.1 mm 
for the values of Y and w arising in the experiments described later. Outside 
this layer, A vanishes exponentially. Consequently, to find A near a 
given boundary, the other boundaries can be ignored, For a standing 
wave this case represents a forced oscillation, requiring a supply of energy 
to counteract viscous dissipation. However, for free oscillations in which 
the damping is small, the frequency w is large in comparison with a in the 
exponential decay factor ; thus we may again assume a boundary layer 
of thickness d ( v / w ) ,  and may make use of the suggested approximations. 
In  the body of the liquid, including the vicinity of the free surface, A can 
be taken to be zero in this approximation; accordingly, the boundary 
conditions at the free surface are satisfied in terms of q5c alone. 

To compute the viscous dissipation we use the well-known result 
(see Lamb (1945), $329) 

where E is the total energy (T + a), and 2F is the dissipation function 
given by 

2 F = p  1 ( V x u ) 2 d V + p I  ( n . V u 2 ) d S - 2 p  n . u x ( V x u ) d S ,  (28) 

in which the two surface integrals extend over the whole boundary 
S’ = S+S, of the liquid volume V .  The bars denote averages over a 
cycle for an assumed harmonic time dependence. Equation (28) simplifies 
on noting that u = 0 on rigid boundaries, and V x u = 0 approximately 
at the free surface. Therefore 

approximately, where 

dE/dt = - 2 F  (27)  

“ V  S’ I,. 

2F = 2F,+2Ft (29) 

(30) 2F, = p 1 (V x V x A)2 d V ,  
V 

and 

where A is expected to be insignificant away from the solid boundaries. 
The latter integral, which is a simple transformation of a volume integral, 
represents the dissipation in the body of the liquid. It may at first seem 
inconsistent to retain this term, which is clearly of smaller order of magnitude 
than the first term under the assumptions of the present approximation, 
while neglecting the dissipation, due to rotational motion at the free surface, 
represented by the third integral in (28).  (This integral measures the 
additional dissipation in the ‘boundary layer’ which must exist near the 
free surface in order that viscous stresses are balanced at this surface- 
where the only possible non-uniform stress is that of surface tension.) 
However, the dissipation in the boundary layer at the free surface is in 
fact of lesser order of magnitude than that in the body of the liquid (see 
Ursell (1952), p.94), and the term (31) gives a reliable indication of the 
magnitude of the dissipation occurring away from the solid boundaries. 
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To find the damping of a single mode, we keep only one term in (8). 
The kinetic and potential energies are then 

For damped oscillations we have 
- 4* eiw&+t. 

Q m s -  m 

Assuming cc < w (which is justifiable a posteriori) we obtain 
- 

dt = pgq:; (- cc)e-. (33) 

Inserting C#c from (8) into (31) we obtain after some elementary integrations 

2 Ft = 2pkk pgqz: rzort. (34) 

The differential equation for A in the vicinity of a given wall can be inte- 
grated readily in terms of known functions (assuming the other boundaries 
to be at infinity). The boundary 
layer thickness 1 is small compared to the radius of the cylinders considered. 
Hence we can neglect the effects of curvature. (The error made is then 
of the order of 1/R, which is less than 1%.) With this approximation the 
vector potential in the vicinity of the side walls is 

However, even this is not necessary. 

A, = D, e-di(R+)’z cos sd sinh k,(z + gh), 
A, = De e-di(R+)’z sin sd sinh k,,(x + 4h), } (35) 
A, = 0, 

1 = 2/ (v /wm).  J 
With this expression for A it can be seen from (25 b) that the resulting 

4: is O(lk,,) = O(Z/R). This then verifies the earlier statement that the 
contribution of Indeed, we see that the 
approximation method adopted is essentially an expansion in powers of 1/R. 

Correct to first order in l/R, we find from (35) in conjunction with (30) 
the contribution (2FJ of the side walls to the dissipation due to the rigid 
boundaries to be 

to the fluid velocities is small. 
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The contributions to the dissipation from the tank bottom are obtained 
Thus, for the vector potential in the vicinity of z = -3h we similarly. 

find 

where -1 -4mNtns 
= (sinh k,, h)' (39) 

Calling the contribution to the dissipation 2 Fb we have (again to first 
order in IIR'r 

I ,  

Inserting the results expressed in (33), (34), (37), and (40) into (27) 
yields an equation for the damping constant u. Clearly this is a sum of 
three terms corresponding to the damping of the free surface (34), the 
side walls (37) and the bottom (40). 

A conventional description of the damping is in terms of the logarithmic 
decrement 6 = 2nu/w. The result is 

6 = 6 , + 6 , + 6 b ,  (41) 

(42 b) 
1 + (slkmsR)2 - 

= R 1-(s/k,R)2 

6, = (qo) 2km,R 
2wmS R sinh 2k,, h * 

The case which we have examined in detail is the fundamental mode 
In figure 2, 6 is plotted as a function of h/R with s = 1, k,, = 1-841R-'. 

for several R; numerical results are given in table 1 .  
Three remarks are perhaps in order. 
(a) As would be expected since most of the dissipation takes place at 

the rigid boundaries, the damping is rather insensitive to the shape of the 
cylinder cross-section except in so far as the total area of the walls is affected. 
Thus, the 6 for the circular cylinder is only 18% less than that for a square 
cylinder of the same cross-sectional area. 

(b) The damping in the body of the liquid (42 a) is small compared to 
the wall damping-particularly for large cylinders. Indeed, in the sense 
of an expansion in powers of IIR one should perhaps not retain this term. 
It is rekdily seeg that 6, is O(12/R2) while 6, and 6, are O(Z/R). However, 
there are two reasons for keeping it. First, it permits an evaluation of the 
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relative contributions to the damping. Thus, for the smallest of the 
cylinders used, the contribution of this term to the damping was roughly 
10%. Second, in the limit of an infinitely deep ocean infinite in extent 
this is the only damping term (cf. Lamb (1945), $348). (Of course, then 
It ,  stands for the wave number of whatever wave is being considered and 
is not necessarily zero.) 

(c) The method of calculation adopted is probably not the simplest in 
order to obtain results to the given order in 1/R. It was used since it is a 
logical first step in a seemingly convergent sequence of successive approxi- 
mations, and permits a clear estimation of the errors remaining after the 
first approximation. 

The comparison of the theoretical prediction (42) with the experiments 
is given below. 

111. EXPERIMENTAL TESTS 

Measurements were made of the logarithmic decrement as a function 
of h/R for tap water at 16" C in brass cylinders of radius 1.5 in. and 3 in., 
and a steel cylicder of radius loin. The brass cylinders were made from 
118 in. wall extruded brass tubing, the steel cylinder from 3/32 in. sheet 
rolled to a loin. radius and brazed. Bases of 3/8in. thick brass, fitted 
to each of the cylinders by grooving and silver-soldering, were of square 
cross section and cut tangent to the cylinder. 

The amplitude of the surface oscillation was recorded as a function of 
time by means of a sensing element in the liquid, connected through a low- 
frequency amplifier to an EsterlineAngus recorder. The sensing element 
consisted of a 40-gauge wire stretched taut parallel to the axis of the cylinder 
1/16in. from the wall and insulated from the cylinder by a bushing in the 
base. The wire was located accurately on that diameter of the cylinder 
which was perpendicular to one edge of the base. To  obtain good linearity 
and stability of response, the wire was connected in series with the cathode 
of the first stage of the amplifier, the conduction path for the vacuum tube 
being completed through the liquid to the grounded cylinder. Since the 
resistance between the wire and the cylinder is proportional (very nearly) 
to the length of wire below the free surface, the change in voltage between 
cathode and grid of the first amplifier stage is proportional to the displacement 
of the free surface of the fluid from equilibrium. T o  obtain greater sensi- 
tivity for the larger values of hlR, the wire was extended only 2in. below 
the free surface of the liquid, a rubber band between the wire and the base 
serving to keep the wire taut and to insulate it. Two such wires, each with 
an amplifier and recorder, were used in each tube and were placed accurately 
90" apart. One recorded the motion of the fundamental transverse mode, 
while the other, being placed on the nodal diameter, served as a monitor 
to indicate the purity of the transverse modes. The mechanical arrangement 
is illustrated in figure 1. 

The deflection of the recorder was calibrated in terms of the amplitude 
of oscillation of the fluid by means of a sliding probe fitted with a needle 
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at the lower end and carrying a scale engraved in 0.05in. divisions. The 
probe, located diametrically opposite the sensing element and parallel to, 
and supported from, the wall of the cylinder, was connected electrically in 
series with a generator of 1000 cyclelsec frequency and headphones, the 
final adjustment of the water level being made with an eyedropper. The 
probe was then raised a given distance and the fundamental mode excited 
by rocking the cylinder about the edge of the base. The gain of the 
amplifier was adjusted until the deflection of the recorder equalled a 
convenient number of scale divisions at the time the last intermittent tone 
was heard as the oscillations damped out. By setting the probe at various 
distances above the equilibrium surface, the response of the recording 
system was determined and found to be linear within the accuracy of the 
measurements. 

MONITOR WIRE 

LUCITE CLAMP ASS'Y 

TO AMPLIFIER INPUT 

#40 GA. WIRE 
PER DIVISION 

RUBBER BAND NEEDLE POINT 

1 j . E  
PLUG  SCREW^ 
GASKET 

Figure 1. Arrangement of the sensing elements and calibration probe. The walls 

Measurements of the logarithmic decrement were made for a range of 
amplitudes, the largest corresponding to a /R  approximately equal to 0.2. 
It was difficult to excite larger amplitudes without exciting higher modes. 
However, up to this limit, no deviations from a simple exponential decay 
were observed. 

Figure 2 and table 1 give the results of the measurements for the 1.5 in, 
and 3in. radius tubes. For the number of trials made at each value of 

of the brass tube are in. thick, and the base is of 3 in. brass plate. 
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h/R the standard deviation of the mean was less than 3% except for 
hlR = 0.25 for the 1-Sin. tube; for this it was 9%. The results for the 
loin. radius tube are not included for reasons given below. The build-up 
of a circular mode was essentially eliminated by stressing the cylinder 
slightly to cause the major axis of the ellipse to coincide with the diameter 
containing the sensing element. The eccentricities required to maintain 
the transverse mode were of the order of a few thousandths of an inch. 

0 I 2 3 4 

Figure 2. Comparison of the theoretical and experimental results for the damping 
of surface oscillations in polished right circular cylinders. 

h/R 

Initial measurements of the decrement with the surfaces unpolished 
gave values of the logarithmic decrement too large by a factor of between 
2 and 3, as shown in figure 3. After polishing the tubes to a mirror finish 
by hand in a direction parallel to the axis of the cylinder the results shown 
in figure 2 were obtained. 
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The bottom surface of the 1.5 in. radius cylinder could not be reached 
by hand and was polished in a lathe. This process leaves minute circular 
grooves, which are believed to account for the large values of So observed 
for hlR = 0.25 and 0.5, since it is for these values of hlR that the contribution 
of the bottom to the damping is greatest. The decrement for the funda- 
mental mode in this region is actually larger than for the second mode, 
making it more difficult to obtain a pure fundamental. Contamination of 
the inside surface with wax, oil, or even the film left by evaporating alcohol 
increases the decrement by several per cent. 

0 0.5 

Log Decrement vs h / R 
Water 1 6 O C  

Unpolished Tube 
R =3" 

1 1.5 21) ,R2.5 > 3.5 4.0 4.5 

Figure 3. Comparison of the theory (solid curve) with measurements in an unpolished 
cylinder. 

The loin. radius tube, because of the nature of the steel, could not be 
polished to the required degree. The measured decrements were again a 
factor of between 2 and 3 too large, and for this reason the results are not 
tabulated. The shape of the curve obtained was similar to those of figure 2. 
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IV. COMPARISON OF THEORY AND EXPERIMENT 

The overall agreement between theory and experiment (figure 2 and 
table 1) is rather satisfactory and would seem to show that the analysis given 
above is adequate. 

f o  

2.26 
3.04 
3.62 
3.76 
3.77 
3.80 

1-73 
2.16 
2.47 
2.52 
2.55 
2.56 

0.25 
0.50 
1.0 
1.667 
2.0 
4.0 

folfo -- 
1.005 
0.970 
0.931 
0.921 
0.919 
0.911 

0.932 
0.964 
0-968 
0.968 
0,962 
0.959 

-- 
0-25 
0.5 
1.0 
1 *5  
2.0 
4.0 

~ C l S O  

0.598 
0.808 
0.891 
1.06 
1.02 
1-07 

1.065 
0-933 
0-895 
0.904 
1.02 
1.03 

f, (5ec-l) 

2.27 
2.95 
3.37 
3 *46 
3 -46 
3 -46 

1.61 
2.08 
2.39 
2.44 
2.45 
2.45 

f % , / ~ o  -- 
0.600 
0.796 
0.947 
1-02 
0.976 
1.025 

1.025 
0.914 
0.880 
0.891 
0.980 
0.980 

-- 

6,XlOO 

7-06 
3-45 
2.47 
2.42 
2.42 
2-44 

60 

11.8 
4.27 
2.52 
2.28 
2.38 
2.27 

4.15 
2.02 
1-44 
1.40 
1-41 
1.42 

7-08 
3 a40 
2.385 
2.32 
2.32 
2.33 

3.89 
2.17 
1.61 
1.55 
1-41 
1.41 

4-00 
1 *98 
1.415 
1 *38 
1.38 
1-38 

Table 1. Comparison of theory and experiment. Surface oscillations in right 
circular cylinders. 

One discrepancy should perhaps be noted. From table 1 one sees that 
the observed frequencies are somewhat higher than those calculated from 
the classical formulae. We believe this can be understood on the basis 
of surface tension effects associated with wetting of the wall. (This does 
not mean the surface tension effects associated with the main part of the 
free surface. A crude analysis 
suggests that the correct logarithmic decrement should again be given 
by (42) using as the frequency w the observed frequency. A check of this 
is obtained on noting that one would expect the observed decrement always 
to be greater than the calculated value. (All dirt effects would presumably 
tend to increase the dissipation and hence to increase the observed decre- 
ment.) In  table 1 the ratio of theoretical decrement corrected in this way 
(8,) to the observed (8,) is always (within the standard deviation of the 
measurements) less than, or equal to, unity. 

The extreme sensitivity of the experimental results to the condition of 
the walls is quite interesting. Roughnesses whose depth was small com- 
pared to the boundary layer thickness had a remarkably large effect. 

This we have seen is much too small.) 

V. CONCLUSION 
It would seem that on the basis of these results one can conclude that an 

essentially correct description of the damping is given by equation (42). 
This is to be understood in the sense of rather ideal situations with very 
smooth walls. Depending on the roughness of the walls, there is an 
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additional factor of between 2 and 4 in the decrement which is approximately 
size independent. This serves to emphasize the extreme care which must 
be used in comparing numerical results of experiments of this kind with 
theoretical predictions. 

Two questions raised by this work are left unanswered. 
(a) Can one understand in detail the effects of very small roughness on 

(b) Can one improve the frequency calculation to obtain closer numerical 
the damping ? 

agreement with the observed frequencies ? 
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